博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
模式分解是否为无损连接的判断方法
阅读量:4886 次
发布时间:2019-06-11

本文共 1490 字,大约阅读时间需要 4 分钟。

方法一:无损连接定理

关系模式R(U,F)的一个分解,ρ={R1<U1,F1>,R2<U2,F2>}具有无损连接的充分必要条件是:

U1∩U2→U1-U€F或U1∩U2→U2 -U1€F+

方法二:算法

ρ={R1<U1,F1>,R2<U2,F2>,...,Rk<Uk,Fk>}是关系模式R<U,F>的一个分解,U={A1,A2,...,An},F={FD1,FD2,...,FDp},并设F是一个最小依赖集,记FDi为Xi→Alj,其步骤如下:

① 建立一张n列k行的表,每一列对应一个属性,每一行对应分解中的一个关系模式。若属性Aj Ui,则在j列i行上真上aj,否则填上bij

② 对于每一个FDi做如下操作:找到Xi所对应的列中具有相同符号的那些行。考察这些行中li列的元素,若其中有aj,则全部改为aj,否则全部改为bmli,m是这些行的行号最小值。

如果在某次更改后,有一行成为:a1,a2,...,an,则算法终止。且分解ρ具有无损连接性,否则不具有无损连接性。

对F中p个FD逐一进行一次这样的处理,称为对F的一次扫描。

③ 比较扫描前后,表有无变化,如有变化,则返回第② 步,否则算法终止。如果发生循环,那么前次扫描至少应使该表减少一个符号,表中符号有限,因此,循环必然终止。

举例1:已知R<U,F>,U={A,B,C},F={A→B},如下的两个分解:

① ρ1={AB,BC}

② ρ2={AB,AC}

判断这两个分解是否具有无损连接性。

①因为AB∩BC=B,AB-BC=A,BC-AB=C

所以B→A ¢F+,B→C ¢ F+

故ρ1是有损连接。

② 因为AB∩AC=A,AB-AC=B,AC-AB=C

所以A→B €F+,A→C ¢F+

故ρ2是无损连接。

举例2:已知R<U,F>,U={A,B,C,D,E},F={A→C,B→C,C→D,DE→C,CE→A},R的一个分解为R1(AD),R2(AB),R3(BE),R4(CDE),R5(AE),判断这个分解是否具有无损连接性。

 ① 构造一个初始的二维表,若“属性”属于“模式”中的属性,则填aj,否则填bij

② 根据A→C,对上表进行处理,由于属性列A上第1、2、5行相同均为a1,所以将属性列C上的b13、b23、b53改为同一个符号b13(取行号最小值)。

③ 根据B→C,对上表进行处理,由于属性列B上第2、3行相同均为a2,所以将属性列C上的b13、b33改为同一个符号b13(取行号最小值)。

④ 根据C→D,对上表进行处理,由于属性列C上第1、2、3、5行相同均为b13,所以将属性列D上的值均改为同一个符号a4

⑤ 根据DE→C,对上表进行处理,由于属性列DE上第3、4、5行相同均为a4a5,所以将属性列C上的值均改为同一个符号a3

⑥ 根据CE→A,对上表进行处理,由于属性列CE上第3、4、5行相同均为a3a5,所以将属性列A上的值均改为同一个符号a1

⑦ 通过上述的修改,使第三行成为a1a2a3a4a5,则算法终止。且分解具有无损连接性。

声名:该博文的部分内容转载自百度文库http://wenku.baidu.com/linkurl=KtuuXFU3TLD13PKSFSDoLgOdCFi9j7R0CBjpfTIY1zYxikvftzQwvLiyLg8WNX58g6t6i0YnUMgL7FFWo4RzoIl23UylHvcMsngwI0rVTgK

转载于:https://www.cnblogs.com/bewolf/p/4443730.html

你可能感兴趣的文章
redis持久化方法对比分析
查看>>
对缓存的思考——提高命中率
查看>>
Hadoop 下常用的命令
查看>>
python经典面试题:想找工作?这些面试题你会了吗?
查看>>
[转]MySQL索引详解(2)
查看>>
php交互篇(二)session 与 cookie
查看>>
【Java Saves!】Session 6:十六指星人
查看>>
Android 获取手机通讯录信息 — 姓名和号码
查看>>
CSS控制文本自动换行
查看>>
httpclient文件下载
查看>>
WEB安全学习二、注入工具 sqlmap的使用
查看>>
自己收藏的一些网址
查看>>
ZT UML 类与类之间的关系
查看>>
SQL Server 索引和视图
查看>>
Codeforces Round #296 (Div. 2) A. Playing with Paper
查看>>
windows-install-python-and-sphinx(*.rst file)
查看>>
UML各种图总结-精华
查看>>
jquery $.each()用法
查看>>
我的软考之路(四)——数据结构与算法(2)之树与二叉树
查看>>
Effective C++_笔记_条款02_尽量以const、enum、inline替换#define
查看>>